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Sea clutter

Backscattered returns from a patch of the sea surface
illuminated by a transmitted radar pulse
Complexities turbulent wave motions + multipath propagation
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/ Source of sea clutter data \

e 14 sea clutter measurements from Prof. Simon Haykin; each
measurement contains 14 range bins, a few bins hit a smgdittar

e Each measurement was made under certain weather and sea
conditions (wave height varied from&®m to 38 m; wind conditions
varied from still to 60 km/hr)

. Antenna height
: Grazing angle
: Range (distance from the radar)

1 814 : Range bins

W _0Ve =

<—:74>|
/
(
\g
Q
1]

Bl BZ DID Bi—1 Bi Bi+1 DID I‘:”14

(Secondary)(Primary)(Secondary)

K I R - /




Significance and Challenges of sea clutter modeling

Sea clutter analysis is an important theoretical problem

Target detection within sea clutter is important to coaaital national
security, to navigation safety, and to environmental nomg

CouldSat Sea clutter removal may help improve cloud system
modeling

Over a thousand papers have been published. Numerous rmethdd
new concepts including chaos and fractal theory have besshtty
model sea clutter

By now, the nature of sea clutter is still not well understood

Simple and effective models for sea clutter are highly e
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/Why sea clutter modeling is difficult? — Nonstationary!\

(i) Data viewed at different time and scales appear verghfit.
(i) Subplot (e): signals cannot be characterized as ideadom fractals or
autoregressive (AR) processes.
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/ Failure of direct distributional analysis of sea clutter \
() Distr. tried: Weibull, log-normal, K, compound Gaussjaog-Weibull

(i) K distt. (x) = 22, (ﬁx)va_l(\/%Q, x>0

IS among the best; but the fitting can be poor
— Can’t help with target detection — Culprit: data is nonstati onary!
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/ Our approach to fit nonstationary sea clutter data \

e Denote the sea clutter amplitude datayloy), n=1,2,---

e Denote the differenced data of sea clutter by,
X(n) =y(n+1)—y(n),n=12,-.

e Fitx(n),n=12 --. usingTsallis distribution .

e Why such a strategy works?
— Consider white Gaussian nois€j), i=1,2,---. Itis stationary!

— Standard Brownian motion (or random walkjn) = $i', u(i) is
nonstationary, because the variance () is proportional to
(time) n

— K-distr. can be derived by assuming a random walk model for

\\ scatterers! /
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Tsallis distribution

e Obtained by maximizing the Tsallis entropy under 2 constgai

e The distr: when k g< 3,

p(X) = Z—lq[1+ B(q— 1Y/A-9),

whereZg Iis a normalization constant.
e Whenq=1 & 2, it reduces to the normal & Cauchy distr.
e When 53 < q < 3, the distribution is heavy-tailed

e Significance: provides foundation for the heavy-tailed argtable
distr.
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Heavy-tailed distribution

a
Pareto distrP[X > x| = (*—’) , X>b>0, a>0

X
wherea andb are the shape & the location parameters.

In the discrete time case, we have Zipf distr.
Heavy-tailed distrP[X > x| ~ X% X— o0

Whena < 2, the variance and all higher than 2nd-order moments ¢
not exist.
whena < 1, the mean also diverges.

Cauchy distr (also called Lorentzian distr) with PDE) = (e

IS an example witlm = 1

1o
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Stable laws and Levy motions

Paul Levy (teacher of Mandelbrot, tlk@ather of fractal geometry)
posed such a question: When will the distribution for the sidiime
random variables and those being summed have the sameofuaicti
form?

Stable laws are the unique class of distributions that hagk a
property.

Stable laws include Gaussian distr as a special case; in the
non-Gaussian case, the distributions are heavy-tailed

Levy motions: random walk processes whose increments are
characterized by stable laws

/
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The meaning of stable laws and Levy motions \

Normal distr & central limit theorem describe daily, mundaife
— Many lucky people live through such a life happily.

Occasionally one has to take on an unplanned journey, durmch
many unexpected and exciting (or terrible) things happen.

Such a journey could be related to hate, love, patriotism,sanon,
as illustrated by numerous classic poems, fictions and raovie

Kolmogorov was pondering Stable laws with infinite variance
should be observed more often than the normal distr. Intyeal?

Abundant examples of heavy-tailed distributions have lfeend.:
Amount of Internet traffic, topology of networks (eg, powaww
networks), distr. of the size of the power outages, ...

Fundamental question: How do stable laws arise? /
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/ Deriving Tsallis distr by maximizing Tsallis entropy \

Tsallis entropy aims to characterize a type of motion whose
complexity is neither regular nor fully chaotic/random,dimploying
a parametegq, that best describes the motion.

It's defined byHy = 3 (1— s, piq> .

In the continuous case, it HqT = qfll (1— ffwd(g)[cp(x)]q)
It reduces to the Shannon entropy witer> 1.

Tsallis distr can be derived by maximizing Tsallis entropyger 2
constraints,

— Total prob. is 1:/”_ p(x)dx= 1.

— Second normalized moment is knowfT; [x* — 02][p(x)]9dx = 0.
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Generalized Tsallis distribution

e \We may generalize the Tsallis distr by replacing the 2nd tcaimd
by [*,[X® —0%][p(X)]9dx = 0. Then the distr becomes

p(X) = Z—1q[1+ B(gq— 1)x)Y/ (-9

e This is our starting point for modeling sea clutter.

e To model turbulent motions, Christian Beck (2000) obtaitiex
same distr. through a different approach, which is conalalgmmore
complicated than our approach.

o /
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Fitting sea clutter by Tsallis distribution \

(Symbol: data; curve: Tsallis fit)

PDF

(d)

x

Data is ready. So what
Is the challenge here?

Data is highly nonsta-
tionary. It's not very
meaningful to perform
distributional analysis
on original data.

How about the differ-
enced data? It works!

Parameters are helpful
for target detection.

/
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Introduction to \
fractal & multifractal

e A part is (exactly or statisti-
cally) similar to another part,
or to the whole.

e Clouds; mountains; trees; etc.
(Images: not computer-made,
but photos of Jiu Zhai Gou)

e Power-law relation
— a straight line in a log-log
plot (scaling)

e Many (or possibly infinitely
many) power-law relations

— Multifractal. /
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Cantor set

The set consists @b of isolated points. Its measure and topological
dimension are both 0. Fractal dimensierin2/In 3.
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Fractional Brownian motion (fBm) By (t)
Gaussian process with mean 0 & stationary increments

Variance:
E[(Bn(1)?] =t

Power spectral density
f—(ZH +1)

H: Hurst parameter.

1/2 < H < 1: long memory (long-range-dependence (LRD))
H = 1/2: standard Brownian motion

0 <H < 1/2: anti-persistence

Applications to a wide range of problems (including Hollyweb
movie making—fancy landscape)
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Examples of fBm processes with differen \

(a) H=0.25
(b) H=0.50

(c) H=0.75

(d) H=0.90

~— N\ }
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Random walks and their analysis

Remove the mean values frofr(i) } process, denote it gsi(i) }

Random walky(n) = S, u(i)

Independenti(i)’s (a drunk)—no correlation:
Ely(m)?] = m-E[u(i)?] ~ m

Fluctuation analysis (FA):

F@(m) = ([y(n+m) —y(n)[%) ~ mH

Hurst parameteld = H(2) = {(2)/2

— H = 1/2: no or short-range correlation

— 0 < H < 1/2: anti-persistent long range correlation
— 1/2 < H < 1: persistent long range correlation

~
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/ The meaning of the Hurst parameter \

e Increment processxy, Xz, -+ ,Xn }: power spectral density (PSD)
f~(2H-1)- autocorrelation functiorr (k) ~ k*1~2 as k— oo

e Random walk proces§/n}, yn = 31X, PSD: f~(2H+1)

e Averaging the original series over non-overlapping blocks of size
m to obtain:

)<t<m) = ()<tm—m—|—1 —|_ cee +><tm>/m7 t 2 17 Var( ) 2m2H e
wherea? is the variance ofxg, %o, -+, X}

e The value ofH determines effectiveness of smoothing:
— H =0.50,m=100,var(X(M) = ¢2/100
— H=0.75,m=10% var(X(™) = g2/100

K — H =0.25,m~ 215, var(X(™) = ¢2/100 /
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Structure-function—based multifractal analysis \

o FO(m) = (|y(i +m) —y(i)|%) ~ @ 2
q < 0: emphasizes small absolute incrementg(Df
g > 0: emphasizes large absolute incrementy Of

e H(q) =¢(a)/q

e Monofractal:Z(q) linear inq (¢(0) = 0);
H(q) constant
Multifractal: {(q) nonlinear inq;
H(q) varies withq

e Can extend to detrended multifractal and wavelet-based
multifractal analysis
— When analyzing real data, these are preferred!
(Gao et al.Phys. Rev. 2006)

/
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Target detection within sea clutter

e H(2) is much larger when the range bins hit a target

e Sea clutter data are multifractals, and that otihealues can also
robustly detect targets within sea clutter
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e HypothesidHp: sea clutter without targelj (2) <y

HypothesidH;: sea clutter with targetl (2) >y
e vV~ 0.185 yields a perfect classification for all datasets
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/ Accuracy of target detection across measurements\
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Modeling multifractals:
Cantor set with multifractal measure

0 1 |
- o
W W=l E1
W LW iy 1 Ez

w,w,rr’,1—r, 1—r’: governed by the same pEfr).
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Cascade multifractals: construction rule

Stage Time scale
0 1 e=2°
/\
1 M1 1—ri4 e=2""
TN TN
2 M1,172,1 Mal=ra0) (1=ridras (1=r)(1-rz3) €=27"
N
3 riafaarss Tiafza(1-rsy) €=27°

All 11 m,1—1r nare governed by same pHfr).

~

/

26



-

Multifractal scalings for cascade models \

The weights at the stadé, {wn,n=1,...,2V}, can be expressed as
Wh = UUz---UN, Whereu;, | = 1,...,N, are eitherj; or 1—r;j;.

Thus,{u;,i > 1} are independent identically distributed (iid) randon
variables (RV’s) having pdP(r).

Since Inw, Is the sum of iid RV’s Iy, 1 =1, ..., N, one readily sees
that Inw, follows a normal distribution, and thwg, follows a
log-normal distribution

Multifractal scaling for the cascade model

Mq(e) =y Wil ~ "%, Dq=1(0)/(a—1)

We can also prove that

—
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Stage-dependent multiplicative process model \
Stage Time scale
0 1 e=2°

PO(r) Py

pO2(r) /\

2 M2, r1,1(1_"2,1) (1—r1’1)r2,3 (1—r1,1)(1—r2’3) €=27%

P(2’3)(r)

o

-3
3 M,172,173,1 r1,1"2,1(1_"3,1) €=2

Variance ofP(""+1)(r) varies from one stage to the next in a simple
Giin) =20 a>1

manner. G(i,i+1 (i—1,)’ /
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Amplitude

Envelope

Sea clutter amplitude and envelope data

Envelope is formed by picking up successive local maxima
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scaling law.

BOOE- (a) Amplitude

/ Multifractal features of sea clutter (Gao & Yao

smooth waveform between successive maxima does not fdllewnultifractal

L (b) Envelope

~

Original signal: scaling breaks for negatig@and small time scale; indicating the
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Log-normality of sea clutter envelope signal§¢Gao & Yao

Original signal: slightly deviates from log-normal disution —
due to the smooth waveform part

Envelope signal: excellent log-normal distribution.
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Cascade multifractal modeling of sea clutter

(c,d) The corresponding simulated data.
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Target detection by cascade multifractal modeling

(a)

000,0&*8 0.0

Primary

o
. -ng'g-goo' ©0000000¢
888000000006

Secondary

Non target

A4

10

20

30

0.9¢

0.87

0.7}

0.67

0.5f

(b)

Primary

m.eqieesmaam 888399898¢

Secondary

/Non target |

(e«

A4

10

20

30

33




Conclusions \

We have shown that sea clutter data are highly nonstaticaraty
multiscaled

We have developed new distributional analyses approacha=tter
describe sea clutter

We have developed structure-function based highly acecidse to
100%) multifractal methods for detecting low observablgets
within sea clutter

We have developed a cascade multifractal model for seaglutt
which can simultaneously account for the distributionalvadl as
correlation structure of sea clutter

For more details on the theory, see Gao et al
Multiscale Analysis of Complex Time Series— Integration of
Chaos and Random Fractal Theory, and Beydmiey, August,

2007. /
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ome thoughts on reducing sea clutter from CoudSat data

~,

Extend the 1-D cascade multifractal model to 2-D and 3-De(aft
each partition, one square becomes 4 squares, and one @adredse
8 cubes)

ldentify important spatial scales associated with wavetartallence
patterns on the sea surface; these scales are importardreatem
multifractal modeling

Estimate the Hurst parameter (and theg) spectrum) from spatial
sea clutter data; they may be of critical importance in dasmjthe
best spatial smoothing algorithms

Non-Gaussian sea clutter distribution may also be expuldde
Improve spatial smoothing

/
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